More efficient KEMTLS with

pre-distributed keys

ESORICS 2021

Peter Schwabe, Douglas Stebila and Thom Wiggers

TLS 1.3

RFC 8446

* Signed Key Exchange

 Ephemeral (EC)DH key
exchange

 RSA or EC signatures

Key
Exch

Auth

Client

ClientHello

+ key_sharex

+ signature_algorithmsx

+ psk_key_exchange_modesx*x
+ pre_shared_keyx -

{Certificatex}
{CertificateVerifysx}
{Finished} -
[Application Datal <

Server

ServerHello

+ key_sharex

+ pre_shared_keyx
{EncryptedExtensions}
{CertificateRequestx}
{Certificatex}
{CertificateVerifyx}
{Finished}
[Application Datax]

[Application Data]

Server
Params

Auth

The Quantums

* Shor’s algorithm (1994)
 RSA, Elliptic curves completely broken by quantum computers
* \We need post-quantum cryptography

 NIST is running a PQC standardization project for
Key Exchange Mechanisms (KEMs) and Signature algorithms

* We need to to think about how move to post-quantum algorithms now:
standardizing e.g. TLS or certificates takes years.

Most PQ Signature algorithms are
big and/or

slow and/or

require hw support

Use KEMs for
authentication
Instead

KEMTLS: ACM CCS 2020

KEMTLS

Us, ACM CCS 2020

e Use KEMs for handshake
authentication

e Avoid extra round-trip by

allowing client to send data first,
instead of server

* First round-trip is implicitly
authenticated

Client Server
ClientHello @ = === >
e ServerHello
T30 e
S ——————— <Certificate> ~
<KEMEncapsulation> Auth
{Finished} = = = a====s—== =
[Application Data] -—-—-—————- >
- {Finished} v
[Application Data] <——————- > [Application Data]

<msg>: encrypted w/ keys derived from ephemeral KEX (HS)
{msg}: encrypted w/ keys derived from HS+KEM (AHS)
[msg]l: encrypted w/ traffic keys derived from AHS (MS)

KEMTLS

What we left on the table

 Client authentication is terrible
(full extra RTT)

e \Vhat if the client already has the
servers long-term public key?

e e.g. through caching or pre-
installed

Client Server
ClientHello @ = (======= >
S ——— ServerHello
oo
<CertificateRequest>
S——————— <Certificate> ~
<KEMEncapsulation> Auth
~ {Certificate} = = i=s==ssas >
Auth
S {KEMEncapsulation}
{Finished} = = ‘====scec >
[Application Datax] ———————- >
v S {Finished} v
[Application Datal] <——————- > [Application Datal

<msg>: enc. w/ keys derived from ephemeral KEX (HS)
{msg}: enc. w/ keys derived from HS+srv. KEM Auth (AHS)
[msgl: enc. w/ keys derived from AHS+cl. KEM Auth (MS)

KEMTLS-PDK

KEMTLS-PDK

Pre-Distributed Keys

 Resumption-style mechanism that
avoids the downsides of
symmetric-key TLS PSK

* Given server’s long-term key, client
can send ciphertext in ClientHello

e Also allow to send client certificate
in ClientHello

 Geta1-RTT, TLS 1.3-shape
handshake without implicit
authentication

Client Server
ClientHello
+ KemEncapsulation

gCertificatep) ————- >

e —— ServerHello

Ao o

<KEMEncapsulation>

e ———— <Finished>

S —— [Application Data]
<Finished> = = = ————— >

[Application Data] <-——————- > [Application Datal

{msg}: enc. w/ keys derived from srv. KEM auth (ES)
<msg>: enc. w/ keys derived from KEX+srv. KEM auth (HS)

[msgl: enc. w/ keys derived from HS+cl. KEM auth (MS)

KEMTLS-PDK

Pre-Distributed Keys

» Certificate message can’t be
forward-secure and possibly can
be replayed

 Potential impact seems lower
than similar O-RTT data concerns

 We use PSK/O-RTT “EarlySecret”
keys from TLS 1.3 key schedule
to also communicate this
similarity.

Client Server
ClientHello
+ KemEncapsulation
{Certificate} —————- >
e —— ServerHello
Ao o
<KEMEncapsulation>
e ———— <Finished>
S [Application Data]
<Finished> = = = ————— >
[Application Data] <-——————- > [Application Datal

{msg}: enc. w/ keys derived from srv. KEM auth (ES)

<msg>: enc. w/ keys derived from KEX+srv. KEM auth (HS)

[msgl: enc. w/ keys derived from HS+cl. KEM auth (MS)

More Efficient KEMTLS with Pre-Distributed Keys
Peter Schwabe, Douglas Stebila and Thom Wiggers

e https://ia.cr/2021/779

* |f you already have the server’s public key, you can do smart things
e Save loads of bytes on the wire compared to KEMTLS
* Achieve full explicit authentication in 1RTT
* Also do client authentication in 1RTT if the client knows to authenticate
* \We discuss the implementation and the analysis in the extended presentation.

e Security proof in the full online version

https://ia.cr/2021/779

Analysis

Implementation

* Extended original implementation of KEMTLS in Rustls
* Actually, a new, much improved implementation of KEMTLS in Rustls

 Fast (AVX2-accellerated) post-quantum implementation via Open-Quantum-
Safe's libogs

 We hacked Rainbow’s AVX2 code into libogs for fair comparision

* All software available via https://wagars.nl/p/kemtlspdk/

https://wggrs.nl/p/kemtlspdk/

Table 1: Summary of performance characteristics of KEMTLS, signed-KEM TLS
1.3 with cached server certificate, and KEMTLS-PDK

KEMTLS Cached TLS KEMTLS-PDK

Unilaterally authenticated

Round trips until client receives response data 3 3 3
Size (bytes) of public key crypto objects transmitted:

e Minimum PQ 932 499 561
e Module-LWE /Module-SIS (Kyber, Dilithium) 5,556 3,988 2,336
e NTRU-based (NTRU, Falcon) 3,486 2,088 2,144

Mutually authenticated

Round trips until client receives response data 4 3 3
Size (bytes) of public key crypto objects transmitted:

e Minimum PQ 1,431 2,152 1,060
e MLWE /MSIS 9,554 10,140 6,324

e NTRU 5,074 4,365 4,185

Unilaterally 31.1ms RTT, 1000 Mbps

authenticated Client Client Server
sent req. recv. resp. expl. auth.

N - Minimum 75.2 115.9 115.9 §V[/// [€guice s
S MLWE/MSIS 63.2 94.7 94.6 Jipnatores n
' NTRU + Falcen 63.1 94.7 94.6 ~ Crhficates
o TLS 1.3 X155 +F¥4 66.3 97.5 66.2
- “Minimum 70.0 101.2 69.9
s ~MLWE/MSIS 63.9 95.1 63.8
5 NTRU /faleon 64.8 96.1 64.7

Minimum 66.1 97.3 66.1
¥ Kyber 63.0 94.3 63.0
& NTRU 63.0 94.3 62.9

SABER 63.1 94.3 63.0

Mutually 31.1ms RTT, 1000 Mbps

authenticated Client Client Server
sent req. recv. resp. expl. auth.
“ Minimum 129.6 160.8 122.9
S MLWE/MSIS 951 126.5 95.0
¢ NTRU 95.0 126.4 94.8
2 TLS 1.3 68.6 100.1 66.0
- Minimum 71.0 102.6 69.9
< MLWE/MSIS 64.4 96.1 63.8
5 NTRU 66.1 98.0 64.7
Minimum 84.9 116.0 84.9
< Kyber 63.95 94.8 63.4
o NTRU 63.6 94.9 63.5
SABER 63.6 94.9 63.5

More Efficient KEMTLS with Pre-Distributed Keys
Peter Schwabe, Douglas Stebila and Thom Wiggers

* Paper with full security proof: https://ia.cr/2021/779

* Implementation: https://wgars.nl/p/kemtlspdk/

* Thanks for watching

https://ia.cr/2021/779
https://wggrs.nl/p/kemtlspdk/

