
Peter Schwabe, Douglas Stebila and Thom Wiggers

More efficient KEMTLS with 
pre-distributed keys 
ESORICS 2021



RFC 8446

• Signed Key Exchange


• Ephemeral (EC)DH key 
exchange


• RSA or EC signatures

TLS 1.3



The Quantums
(Everyone already knows this by now, right?)

• Shor’s algorithm (1994)


•  RSA, Elliptic curves completely broken by quantum computers


• We need post-quantum cryptography


• NIST is running a PQC standardization project for  
Key Exchange Mechanisms (KEMs) and Signature algorithms 

• We need to to think about how move to post-quantum algorithms now: 
standardizing e.g. TLS or certificates takes years.



Most PQ Signature algorithms are  
big and/or  

slow and/or  
require hw support



Use KEMs for 
authentication 

instead
KEMTLS: ACM CCS 2020



Us, ACM CCS 2020

• Use KEMs for handshake 
authentication


• Avoid extra round-trip by 
allowing client to send data first, 
instead of server


• First round-trip is implicitly 
authenticated

KEMTLS



What we left on the table

• Client authentication is terrible 
(full extra RTT)


• What if the client already has the 
server’s long-term public key? 

• e.g. through caching or pre-
installed

KEMTLS



KEMTLS-PDK



Pre-Distributed Keys

• Resumption-style mechanism that 
avoids the downsides of 
symmetric-key TLS PSK


• Given server’s long-term key, client 
can send ciphertext in ClientHello


• Also allow to send client certificate 
in ClientHello


• Get a 1-RTT, TLS 1.3-shape 
handshake without implicit 
authentication 

KEMTLS-PDK



Pre-Distributed Keys

• Certificate message can’t be 
forward-secure and possibly can 
be replayed


• Potential impact seems lower 
than similar 0-RTT data concerns


• We use PSK/0-RTT “EarlySecret” 
keys from TLS 1.3 key schedule 
to also communicate this 
similarity.

KEMTLS-PDK



More Efficient KEMTLS with Pre-Distributed Keys
Peter Schwabe, Douglas Stebila and Thom Wiggers

• https://ia.cr/2021/779 


• If you already have the server’s public key, you can do smart things


• Save loads of bytes on the wire compared to KEMTLS


• Achieve full explicit authentication in 1RTT


• Also do client authentication in 1RTT if the client knows to authenticate


• We discuss the implementation and the analysis in the extended presentation.


• Security proof in the full online version 

https://ia.cr/2021/779


Analysis



Implementation

• Extended original implementation of KEMTLS in Rustls


• Actually, a new, much improved implementation of KEMTLS in Rustls


• Fast (AVX2-accellerated) post-quantum implementation via Open-Quantum-
Safe's liboqs


• We hacked Rainbow’s AVX2 code into liboqs for fair comparision


• All software available via https://wggrs.nl/p/kemtlspdk/ 

https://wggrs.nl/p/kemtlspdk/








More Efficient KEMTLS with Pre-Distributed Keys
Peter Schwabe, Douglas Stebila and Thom Wiggers

• Paper with full security proof: https://ia.cr/2021/779 


• Implementation: https://wggrs.nl/p/kemtlspdk/ 


• Thanks for watching

https://ia.cr/2021/779
https://wggrs.nl/p/kemtlspdk/

